Error estimation for quadrature by expansion in layer potential evaluation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of quadrature errors in layer potential evaluation using quadrature by expansion

In boundary integral methods it is often necessary to evaluate layer potentials on or close to the boundary, where the underlying integral is difficult to evaluate numerically. Quadrature by expansion (QBX) is a new method for dealing with such integrals, and it is based on forming a local expansion of the layer potential close to the boundary. In doing so, one introduces a new quadrature error...

متن کامل

Quadrature by expansion: A new method for the evaluation of layer potentials

Integral equation methods for the solution of partial differential equations, when coupled with suitable fast algorithms, yield geometrically flexible, asymptotically optimal and well-conditioned schemes in either interior or exterior domains. The practical application of these methods, however, requires the accurate evaluation of boundary integrals with singular, weakly singular or nearly sing...

متن کامل

Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent Expansion

We introduce a quadrature scheme—QBKIX—for the ubiquitous highorder accurate evaluation of singular layer potentials associated with general elliptic PDEs, i.e., a scheme that yields high accuracy at all distances to the domain boundary as well as on the boundary itself. Relying solely on point evaluations of the underlying kernel, our scheme is essentially PDE-independent; in particular, no an...

متن کامل

Asymptotic estimation of Gaussian quadrature error for a nonsingular integral in potential theory

This paper considers the n-point Gauss-Jacobi approximation of nonsingular integrals of the form ∫ 1 −1 μ(t)φ(t) log(z− t) dt, with Jacobi weight μ and polynomial φ, and derives an estimate for the quadrature error that is asymptotic as n → ∞. The approach follows that previously described by Donaldson and Elliott. A numerical example illustrating the accuracy of the asymptotic estimate is pres...

متن کامل

An Error Expansion for Gauss–Turán Quadrature with Chebyshev Weight Function

Our aim in this paper is to obtain an expansion for the error in the Gauss-Turán quadrature formula for approximating ∫ 1 −1 w(t)f(t) dt in the case when the function f is analytic in some region of the complex plane containing the interval [−1, 1] in its interior, and the remainder term is presented in the form of a contour integral over the confocal ellipses. In the case w(t) = 1/ √ 1 − t2 we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Computational Mathematics

سال: 2016

ISSN: 1019-7168,1572-9044

DOI: 10.1007/s10444-016-9484-x